AG42B Ljungman, Taktischer Schaft Teil 7

So langsam aber sicher nähert sich diese Beitragsreihe dem Ende, denn ich habe beim letzten Schießtermin – zumindest in technischer Hinsicht – mein Ziel erreicht: Der AG42B macht jetzt genau das, was er soll! Ohne sich selbst zu zerlegen 😊

Optisch ist das Gewehr natürlich noch nicht ganz fertig, denn es fehlt noch die Eloxal-Beschichtung am Schaft. Ein weiterer sehr kurzer Beitrag wird also noch folgen, der den Halbautomaten dann in seinem komplett fertigen Zustand zeigen wird.

Ich möchte dem geneigten Leser aber schon in diesem Artikel alles Weitere an die Hand geben, um seinen Ljungmann ebenfalls zum Schießen zu bringen, falls er mit einem Kauf liebäugelt oder falls er das Gewehr einfach mal wieder vom Staub befreien möchte. Einige der nachfolgenden Tipps sind natürlich auch anderweitig im Internet zu finden, da will ich mich gar nicht mit fremden Federn schmücken. Allerdings kann ich hier und da noch einige Details beisteuern oder Lösungswege aufzeigen.

Freischwingender Lauf und Laufgewicht

Der AG42B Ljungmann hat eigentlich keinen freischwingenden Lauf, das ergibt sich erst durch die Umbettung in meinen eigens dafür konstruierten Schaft. Ich habe das Gewehr vor dem Umbau nie ausgiebig erprobt und kann daher auch nicht sagen, ob es mit meiner nachfolgenden Laborierung ähnlich gute Streukreise ohne Laufgewicht und dafür mit originalem Schaft erzielt hätte. Wer sich an ein ähnliches Projekt wagen möchte, dem sei jedenfalls dieses Laufgewicht wärmstens empfohlen, sofern er das System aus dem Holzschaft ausbettet. In logischer Konsequenz sollte man dann aber auch die untenstehende Laborierung übernehmen. Im Gegensatz zu den vorherigen Bildern in vergangenen Beiträgen ist die unten abgebildete Zeichnung zum Laufgewicht leicht modifiziert worden: Die Bohrung D=5mm/Tiefe 5mm zum Festziehen mittels Schneideisenhalter ist einer gefrästen Schlüsselweite mit SW19 gewichen. Außerdem ist das Gewinde M12x1 nun mit 13,7mm um 1,5mm länger geworden, da das Laufgewicht künftig mit einem Crush-Washer auf dem Lauf befestigt wird. Wem der Begriff nicht geläufig ist: Es handelt sich dabei um eine etwas dickere, speziell geformte Unterlegscheibe zwischen Lauf und Laufgewicht, die sich beim Anziehen des Laufgewichts auf dem Gewinde verformt. Das Laufgewicht bleibt auf dem Gewinde dadurch etwas vorgespannt, sodass es sich nicht mehr ohne Weiteres von selbst lösen kann. Ich habe mir dazu von Brownells folgende Artikel bestellt, bzw. nachbestellt:

Artikel Nr.  452000271 (passt auf jeden Fall)

JP Enterprises ½“x28 .750OD

Artikel Nr.  452000273 (muss ich ausprobieren)

JP Enterprises 5/8“x24 .750OD

Laborierung

Achtung:

Für das Long-Range-Schießen weiche ich von der Ladeempfehlung von Vihtavuori ab! Ich sehe das als unproblematisch an und erläutere das in diesem Beitrag nochmals genauer.

  • Hülse: Lapua Match, Kailber 6,5×55 Schwedenmauser
  • Zündhütchen: CCI 200
  • Pulver: N150
  • Menge: 37,5gr.
  • Geschoss: Lapua Scenar GB458 HPBT, 139gr.
  • OAL: 76,5mm
  • Crimp: keiner

Ähnlich gute Streukreise konnte ich bei der o.g. Laborierung mit nur 36,9gr. N150 erzielen. Da ich das Gewehr aber auch auf sehr weite Distanzen schießen möchte, wähle ich natürlich 37,5gr. N150.

Fabrikneue Verschlussfedern

Ich habe in den letzten Beiträgen mit Schäden an meinem Gewehr zu kämpfen gehabt, die durch den repetierenden Verschlussträger bei Verwendung der obigen Laborierung entstanden sind. Verschlussfedern aus Arsenalbeständen sind immer noch erhältlich und bauen den Energieimpuls des Verschlussträgers am besten ab – für das „Projekt Ljungmann“ haben sie sich als der Schlüssel zum Erfolg herausgestellt! Bei Verwendung der obigen Laborierung sind sie dringend empfohlen, sie haben bei mir aber auch zu weiteren Komplikationen geführt…

„Firing out of battery“

So heißt es im englischsprachigen Raum und beschreibt den Umstand, dass die Patrone (ohne den Abzug zu betätigen!!!) bereits allein durch die Energie des schließenden Verschlussträgers und seines darin gelagerten Schlagbolzens ausgelöst wird. Der Schlagbolzen des AG42B ist im Gegensatz zum Verschluss z.B. eines AR15 nicht ausschließlich schwimmend gelagert, sondern wird noch durch eine kleine Feder im Inneren zurückgehalten. Diese Federkraft am Schlagbolzen wird dann im Normalfall spielend vom Schlaghammer überwunden. Tja, leider überwindet die Federkraft der neuen Verschlussfedern diese Rückhaltekraft bereits und was dann passiert, seht Ihr auf den folgenden Bildern.

Noch bevor der Verschluss komplett verriegelt, zündet der Schlagbolzen durch die Beschleunigung der (neuen) Verschlussfedern die Patrone, die zu diesem Zeitpunkt selbst noch nicht komplett zentrisch im Patronenlager sitzt. Der Hülsenhals verformt sich dadurch einseitig, platzt auf und ohne die erwähnte Verriegelung des Verschlusses, reißt es selbigen sofort wieder nach hinten. Bei dieser Rückwärtsbewegung wird der Patronenboden vom Auswerfer förmlich durchstoßen, einen einzigen Zündhütchenbläser hatte ich sogar auch dabei. Richtig ärgerlich aber war, dass der am Ende befindliche Sicherungsblock wieder die volle Energie des Verschlussträgers abgekriegt hat und dort abermals die Prallflächen herausgebrochen sind – das war dann mittlerweile der zweite Sicherungsblock, der repariert werden musste! Total ätzend, denn der stammte bereits aus dem Ersatzgewehr! Seit diesem Vorfall sind die harten Zündhütchen CCI 200 bei meinem Ljungmann Pflicht!

Nachtrag:

Die härteren Zündhütchen verbessern die Situation beim Verriegeln/erstmaligen Durchladen des Verschlusses wesentlich, aber es kann nach einem Schuss immer noch zu einer „Doppelung“ kommen – so bei mir geschehen. Deshalb: Wer neue Verschlussfedern einsetzt kommt nicht darum herum, auch die Feder des Schlagbolzens zu ersetzen!!! Das Ersetzen ist wirklich einfach: Verschlussabdeckung entnehmen und Verschluss aus dem Verschlussträger entnehmen. Im hinteren Bereich sieht man den Schlagbolzen, welcher durch einen gekerbten Stift gesichert ist. Der Stift wird ausgetrieben, indem man auf die nicht gekerbte Seite schlägt. Auf dem unteren Bild sieht man die neue und die (kürzere) abgenutze Feder, letztere ist über die Jahre des Gebrauchs ca. 20mm gestaucht worden.

Gefettete Hülsen

Ja, von dieser Empfehlung aus einem englischsprachigen Forum hatte ich bereits von einem Kollegen gehört, das geriet aber schnell wieder in Vergessenheit, weil ich als Wiederlader meine LW-Hülsen natürlich immer vor dem Kalibrieren fette. Bei der versuchsweisen Verwendung von Fabrikmunition ist mir dieser Umstand wieder in Erinnerung gerufen worden, denn die Hülsen wurden nicht mehr ausgeworfen, ließen sich zum Glück aber noch manuell heraus repetieren. Die getestete Fabrikmunition war übrigens PPU mit 139gr.-Geschoss und nebenbei bemerkt lief sie richtig schlecht.

Gasrückführung

Im letzten Beitrag hatte ich ein Forum verlinkt, in dem für den AG42B bei Verwendung von progressiven (also langsam abbrennenden) Pulvern eine längere Schraube der Gasabnahme empfohlen wird, um den Impuls auf den Verschlussträger zu mindern, bevor dieser auf dem Sicherungsblock aufschlägt und Schäden verursacht. Das ist meiner Meinung nach nur die halbe Wahrheit, denn ich kann das laut meinen Untersuchungen nicht ausschließlich auf progressive Pulver zurückführen. Schauen wir uns dazu kurz das Gewehr selbst und drei Berechnungen von Laborierungen mit der Software Quickload an: Wenn ich die Lage der Patrone in der Kammer abschätze, so vermesse ich noch ca. 385mm Weg, den das Projektil im Lauf bis zum Passieren der Gaskanalbohrung zurücklegt. Runden wir das der Einfachheit halber mal auf 400mm auf und gehen in die nachfolgenden Diagramme, die mir Marvin zur Verfügung gestellt hat.

Eine Laborierung mit sehr gutem Streukreis, die in einem Forum beschrieben wurde (Schussbild war dabei) und die ich mit Quickload nachbilden liess: 140gr. Nosler HPBT/34,5gr. IMR 4046/OAL 76,6mm/2813 bar. Bei einem Geschossweg von 400mm wirken noch rund 900bar auf den Verschlussträger. Das IMR 4046 ist ein US- Pulver, dass laut meinen Informationen nicht mehr importiert wird, weil es gewisse Zusätze enthält, für die es keine Freigabe mehr in der EU gibt.

Mit N140 habe ich dann versucht, den obigen Spitzendruck von ca. 2800 bar nachzubilden, siehe unten.

139gr. Lapua Scenar HPBT/34,1gr. N140/OAL 76,5mm/2795 bar

Nach einem Geschossweg von 400mm ermittle ich hier einen Restdruck im System von ca. 1000 bar.

Ähnlicher Spitzendruck mit N150, siehe unten.

139gr. Lapua Scenar HPBT/37,0gr. N150/OAL 76,5mm/2861 bar

Auch hier erkenne ich noch einen Restdruck von ca. 1000 bar nach einem Geschossweg von 400mm.

N140 besitzt eine ähnliche Abbrandgeschwindigkeit wie das IMR 4046. Beide Pulver gelten im Vergleich zum progressiven N150 eher als offensiv. Es ist zu erkennen, dass – offensiv oder progressiv – die Druckkurve bei keinem der drei Pulver nach der Druckspitze signifikanter abfällt. Wer eine verlängerte Schraube der Gasabnahme also als notwendig ansieht, kann den Umstand meiner Meinung nach nicht einfach durch Verwendung eines offensiven Pulvers umgehen.

Hinweis: Ich habe den Eindruck gewonnen, dass die Veränderung der Verschlussschraube an der Gasabnahme nicht notwendig ist, wenn man neue Verschlussfedern verwendet!

Für diejenigen, die auch in dieser Hinsicht weitertüfteln möchten, sind hier weitere Tipps:

Man fängt logischerweise erstmal bei einer zu langen Schraube an, die die Gasrückführung komplett unterbindet und das Gewehr vorübergehend wieder zu einem Repetierer macht. Von da aus kann man die Schraube dann versuchsweise Stück für Stück abfeilen, bis die ursprüngliche Funktion des Halbautomaten wiederhergestellt ist. Dazu lädt man für jeden Versuch nur eine einzige Patrone ins Magazin. Das Ziel ist erreicht, wenn der Verschluss aufgrund des leeren Magazins gefangen wird und keine Beschädigung am Sicherungsträger ersichtlich ist. Ich rede bewußt von Beschädigungen und nicht von Berührungen, denn bauartbedingt kann es ja durchaus normal sein, dass der Verschlussträger auf den Sicherungsträger aufschlägt. Nur bitte, ohne Schaden zu verursachen! Anders ist es z.B. beim AR15 ja auch nicht…

Das nachfolgende Bild zeigt meinen bereits reparierten Sicherungsträger. Die defekten Stellen wurden aufgeschweißt, nachgeschliffen und anschließend wieder brüniert. Der leichte Abrieb an den äußersten Ecken der Reparatur entstand während der Versuchsphase mit verschiedenen Schraubenlängen an der Gasabnahme. Ein Fortschritt des Abriebs wurde für die folgenden 40 Schuss nicht mehr beobachtet, sodass ich davon ausgehe, dass es in der jetzigen Konstellation Feder/Laborierung/Verschlussschraube zu gar keiner Berührung mehr zwischen Verschlussträger und Sicherungsträger kommt.

Wer die Verschlussschraube in einer längeren Form benötigt, kann also nachfolgende Zeichnung verwenden:

Die Schraube besitzt laut Zeichnung Überlänge und wird den Gaskanal (ich habe seinen Innendurchmesser mit D= 2mm ermittelt) komplett verschließen. Angefertigt aus einem vergüteten Edelstahl braucht sie nachträglich nicht mehr gehärtet zu werden, lässt sich dafür aber auch leider nicht brünieren.

Der Mühe Lohn

Ich habe auf dem ersten Schussbild (100m, sitzend mit Zweibein und Sandsack) noch sämtliche Versuchsbedingungen und Infos festgehalten. Es ist noch mit einem Restbestand an Munition mit 36,9gr. N150 und den weicheren Zündhütchen FA 210 entstanden, glücklicherweise ohne Schäden oder Fehlfunktionen.

Beim zweiten Schussbild sind einige schlimmer Ausreißer zu sehen, da ich den Schaft nicht richtig im Sandsack fixiert habe. Ich muss sagen der Ljungmann lässt sich nicht so leicht kontrollieren, wie mein Schwedenmauser.

Ersatzteile

Auch die sind fertig geworden! Mit ein wenig Nacharbeit habe ich gleich zwei Sicherungsträger spielfrei auf mein Gewehr eingepasst. Mit den nachgefertigten Sicherungsbolzen und einigen Ersatz-Kleinteilen aus Arsenalbeständen habe ich jetzt einen weiteren kompletten Sicherungsträger. Mal schauen, ob ich ihn nochmal irgendwann benötigen werde.

AG42B Ljungman, Taktischer Schaft Teil 6

Herr Broszat, dieser Artikel ist Ihnen gewidmet!

Sie hatten im letzten Beitrag dieser Serie einen Kommentar hinterlassen und erwähnt, dass die Verschlussfeder des Gewehrs möglicherweise in ihrer Federrate nachgelassen hat – und Sie hatten Recht! An dieser Stelle also nochmals vielen Dank für Ihren Hinweis! Ich habe diese Möglichkeit gar nicht in Erwägung gezogen, glücklicherweise war es mir aber ein Leichtes, das nachzuprüfen. Ich musste dazu erst gar nicht die Produkte von Gutekunst studieren, sondern habe zwei Verschlussfedern aus meinem mittlerweile ganz ansehnlichen Ersatzteilvorrat verwendet. Wenn ich mir also die tadellose Lackierung dieser Federn ohne jegliche Spuren von Schmauch oder Schmutz so anschaue, kann es sich dabei eigentlich nur um unbenutzte Arsenalware handeln.

Ein Hoch auf die Messtechnik…

… so man sie hat! Wieder einmal bringt mich mein Beruf in Sachen Hobby in riesigen Schritten weiter: Ich habe aus meiner Firma kurzerhand mal eines unserer Kalibriergeräte inklusive Sensor bis 20kN Kraft ausgeliehen.

Den Sensor habe ich einmal mit den beiden alten und natürlich auch mit den beiden neuen Federn in das Verschlussstück eingelegt. Um eine gute Krafteinwirkung zu gewährleisten – möglichst unter Ausschluss von Querkräften – habe ich mit einer Stecknuss meines Ratschekastens noch etwas improvisiert. Der Versuchsaufbau ist simpel, siehe nächstes Bild.

Folgt man also der Gleichung F=c*x (Neu: F=R*x) zur Berechnung der Federkraft, kann bei bekannter Auslenkung „x“ und gemessener Kraft „F“ die Federrate „c“ (Neu: „R“) berechnet werden. Sie ist jener Federkennwert, der die „Härte“ der Feder beschreibt. Mir reicht ein qualitativer Vergleich, so vernachlässige ich also die Betrachtung der Auslenkung „x“ und die Berechnung der tatsächlichen Federrate (aber nur, weil die Auslenkung „x“ in beiden Versuchen identisch ist!). Ich schaue mir also nur die gemessenen Kräfte an und stelle fest, dass es mit 36N für das alte Federpaar zu 51N beim neuen Federpaar erhebliche Unterschiede gibt! Mit anderen Worten: Das alte Federpaar hat nur noch 70% der Federsteifigkeit im Vergleich zu den beiden neuwertigen Federn. Da die Gleichung eine lineare Variable (nämlich die Auslenkung „x“) hat, ist es auch völlig egal, wie sehr ich die Federpaare im Versuch vorgespannt hätte, die obige Aussage bleibt gleich – wie gesagt, solange die Auslenkung für beide Versuche ebenfalls gleich gross ist.

Es ist also durchaus möglich, dass diese Info schon alles war, was mir zu meinem Glück gefehlt hat!!! Rückblickend betrachtet kommt die Erkenntnis, dass ich sehr viel Energie in alternative Lösungsansätze gesteckt habe:

  • Neue Laborierung mit 36,9 gr. N150 und Zusatzgewichte für den bereits vorhandenen Schwingungsdämpfer
  • Neukonstruktion einer modifizierten Schraube für die Gasabnahme
  • Kauf eines weiteren AG42B Ljungman. Ja, verrückt – ich weiß!
  • Konstruktion von Sicherungsträger und Sicherungsbolzen für eine Nachfertigung

Zu letztgenanntem Punkt übrigens noch ein wenig mehr Information: Ich habe in unserem Werkstofflabor freundlicherweise Unterstützung bei der Materialbestimmung des Sicherungsblocks erhalten. Keine Ahnung, wie das Bestimmungsverfahren nun genau heißt (irgendeine Spektroskopie), aber das Ergebnis zählt:

Es wird vermutet, dass es sich aufgrund der Zusammensetzung um einen Einsatzstahl ähnlich 13NiCr6 handelt. Bei der Gelegenheit wurden auch noch drei Härtemessungen durchgeführt, die folgende Ergebnisse nach Vickers (HV10) lieferten: 680HV, 690HV und 693HV. Da bin ich mit dem von mir ausgesuchten Stahl 42CrMo4V für die Nachfertigung dieser Teile immer noch ganz gut unterwegs. Außerdem hilft die Bestimmung der Zusammensetzung, die zum Aufschweißen beste Elektrode auszusuchen, denn das beschädigte Teil gebe ich auf keinen Fall auf!

Dem neu gekauften AG42B habe ich jetzt dessen Sicherungsblock entnommen und in mein Gewehr eingebaut, nicht ohne die dortigen Prallflächen vorher mit Edding zu markieren. Demnächst geht es wieder auf den Schiessstand. Sollte sich also herausstellen, dass die Kollision durch die neuen Federn jetzt gänzlich vermieden wird, wechsle ich nochmal zur härteren Laborierung mit 37,5gr. N150. Zeigt sich auch dann die Eddingschicht unberührt, ist das Ziel erreicht. Ich werde auf jeden Fall weiter berichten!

AG42B Ljungman Taktischer Schaft, Teil 4

Ich kann mich glücklich schätzen, dass mein Verein unter erhöhten Auflagen immer noch geöffnet ist und das Schießen mit Langwaffen auf Distanzen von 100m und 300m weiterhin ermöglicht. Durch die Terminvergabe per Buchungsapp ist die Zeit für meine Erprobungen zwar stets knapp, aber ich will mich nicht beschweren! Also angemeldet und ab ging es auf die 100-Bahn…

Obwohl mein Schwedenmauser mit der bisherigen Laborierung hervorragende Streukreise lieferte, habe ich für den jetzigen Halbautomaten eher im unteren Bereich angefangen zu laborieren.

Dies war die Ausgangssituation der Laborierung:

  • Hülse: Lapua Match, Kailber 6,5×55
  • Zündhütchen: Federal Ammunition FA 210
  • Pulver: N150
  • Menge: 3x,x gr.
  • Geschoss: Lapua Scenar HPBT, 139gr.
  • OAL: 76,5mm
  • Crimp: keiner

Getestet wurden schließlich Ladungen mit 34,5 / 35,0, / 35,5 und 36,0 grain.

Natürlich gibt es dazu auch einige Schussbilder, ich beschränke mich dabei aber mal auf zwei exemplarische, die meisten waren noch schlechter:

Was meinen Anspruch angeht, ist das Resultat nicht wirklich gut. Die Streukreise finde ich sogar so schlecht, dass ich sie nicht mal vermessen habe, ich schätze sie aber auf 60mm und 70mm. Von jenen, die ich nicht hochgeladen habe, mal ganz zu schweigen! Auffällig sind neben den zu großen Streukreisen teilweise ordentliche Ausreißer zur Seite (jedoch nicht auf den obigen Bildern zu sehen). Als die Schussbilder teilweise schlechter wurden, habe ich angefangen, mal sämtliche Verschraubungen zu überprüfen: Am Ende hat sich herausgestellt, dass das Zweibein locker geworden ist. Ist mir so auch noch nie passiert! Zumindest nicht mit einem Harris… ☹

Auch die Laborierung des Schwedenmausers mit 38,0 gr. N150 habe ich mit sehr wenigen Schüssen erprobt, allerdings war die Trefferlage oberhalb der Scheibe im Erdwall und so habe ich mich wieder den ursprünglichen Laborierungen zugewandt.

Als der Schießtermin vorüber war, hatte ich zwar noch keine Laborierung, mit der ans Long-Range-Schießen zu denken war, aber eines hatte die Erprobung zumindest gezeigt: Die gesamte Konstruktion des Schafts hat keinerlei Schwächen gezeigt! Alles sass noch genauso bombenfest, wie ursprünglich montiert (vom Zweibein mal abgesehen).

Wieder zu hause angekommen, habe ich mir überlegt, was man nun noch anstellen könnte, um ordentliche Streukreise hinzubekommen. Leider habe ich das Gewehr vor dem Kauf nur auf eine Entfernung von 50m über Kimme und Korn testen können, aber die Streukreise waren für die damaligen Umstände zufriedenstellend. Ich weiß bis heute nicht, ob es mit seinem gebrauchten Lauf überhaupt jemals so gut schießen wird, wie ich das gerne hätte oder was vielleicht ein geübter „Kimme-Korn-/Diopter-Schütze“ mit Originalschaft vor dem Umbau hätte „rausholen“ können. Fakt ist aber, dass der Lauf des AG42B zu stark in Schwingungen gerät und das schon bei weniger starken Ladungen mit N150-Laborierungen (im Vergleich zum Schwedenmauser). Dieser hatte damals mit dem brisanteren Pulver S065 von Lovex ja ein ähnliches Verhalten gezeigt, bis ich daran schließlich die langsameren Pulver N160 und zuletzt N150 erprobt habe. Noch langsamer wollte ich im Pulver jetzt aber nicht mehr werden. Beide Gewehre haben aber auch die Gemeinsamkeit, dass deren Lauf im originalen Holzschaft nicht freischwingend ist, sondern durch eine Abdeckung mit dem eigentlichen Basisschaft mittels Metallösen geklemmt wird. Ich habe dazu auch schon überlegt, den Lauf des AG42B nochmals irgendwo abzustützen oder zu klemmen.

Nicht verzagen, Marvin fragen!

Ja, ist wirklich so: Ich hab´ scheinbar den Wald vor lauter Bäumen nicht gesehen! Marvin habe ich aufgrund seiner Software Quickload angerufen und von der Erprobung des AG42B berichtet. Ich hatte mir erstmal erhofft, noch einige Tipps oder Hinweise bezüglich verschiedener Pulvermengen zu erhalten und deren möglichem Zusammenspiel mit der Anzahl der Züge und/oder der Lauflänge. Er hat mir dann auch berechnet, dass mit der Lauflänge von 620mm beim Ljungman erst ab einer Pulvermenge von 37,0 gr. der Brennschluss noch im Lauf stattfinden wird, entscheidend war aber sein Hinweis darauf, dass ich ja den Kornträger an der Laufmündung demontiert hatte! An den hatte ich überhaupt nicht mehr gedacht, denn er musste ja runter, wollte man das System aus dem Schaft ausbetten. Jedenfalls waren das insgesamt 55 Gramm Stahl, die an der Laufmündung demontiert wurden, wodurch mein „Schwingungsdämpfer“ quasi weg war. Ja, total logisch! Aber daran hatte ich jetzt auch nicht mehr gedacht, muss ich zu meiner Schande gestehen. Und dass, obwohl ich als Biker ebenfalls Lenkerendenblinker an meinem Chopper montiert habe. ☹

Für den nächsten Termin auf dem Schießstand fahre ich also mehrgleisig: Zum einen werde ich noch eine Laborierung mit 37,0 gr. und 37,5 gr. herstellen und abermals meine 38,0 gr.-Ladung mitnehmen. Außerdem werde ich den bisherigen Kronträger in zwei verschiedenen Varianten (80g und 155g) durch ein Laufgewicht ersetzen, das direkt in das originale Mündungsgewinde (M12x1) geschraubt wird (siehe Bild oben).

Bis diese neuen Fertigungsteile verfügbar sind, werde ich mit einem anderen Bauteil als Schwingungsdämpfer improvisieren, das auf dem Laufmantel verschiebbar ist und durch Madenschrauben (auf dem Bild noch nicht eingeschraubt) geklemmt werden kann.

Das Laufgewicht wurde wie gezeigt kurz vor den Bohrungen des „Mündungsdämpfers“ montiert, die resultierenden Schussbilder waren aber immer noch schlecht:

Auch das Verschieben des Laufgewichts hin zur Systemhülse hat leider nichts gebracht. Die Schussbilder wurden dadurch nur noch schlechter und das Hochladen erspare ich mir hier mal. Zum nächsten Schiesstermin waren dann glücklicherweise bereits die beiden Schwingungsdämpfer für die Montage an der Laufmündung vorhanden:

Den schwereren von beiden (155 Gramm) habe ich zuerst montiert und war am Ende echt zufrieden, sodass der leichtere Schwingungsdämpfer vorerst nicht mehr zum Einsatz kam:

Die Laborierung mit 37,5 gr. N150 hat dabei den besten Streukreis mit D=26mm und D=24mm (über Schussmitten und ohne Ausreisser) ergeben. Für einen Halbautomaten diesen Baujahrs auf 100m ein gutes Ergebnis, wie ich finde.

Weitere Untersuchungen

Ich werde in den kommenden Wochen versuchen, eine weitere Kombination aus Laborierung und Schwingungsdämpfer zu finden. Hintergrund ist eine leichte Beschädigung am Prallblock des Systems vom AG42B. Ich denke, dass das von einer der starken Laborierungen herrührt, mit denen ich geschossen habe. Falls es jene des Schwedenmausers mit 38gr. N150 war, so bin ich mit dem aktuellen Favoriten von 37,5gr. immer noch recht nahe dran. Ich sehe hier die Möglichkeit, für diese Laborierung die Pulvermenge zu reduzieren und gleichzeitig den Schwingungsdämpfer anzupassen, oder die Pulvermenge beizubehalten und die OAL der Patrone zu erhöhen. Ich werde mit Letzterem beginnen, weil das erstmal keine Nachbearbeitung des Schwingungsdämpfers oder gar ein Neuteil zur Folge hat. Mindestens ein Beitrag zu dieser Serie wird also noch folgen.

AG42B Ljungman Taktischer Schaft, Teil 3

Vom CAD-Modell bis zum Erhalt aller Bauteile hat es bei diesem Projekt leider richtig lange gedauert, aber am Ende wird ja meistens alles gut…

Hier und da war natürlich auch wieder Nacharbeit angesagt, die war allerdings nicht sehr aufwändig und so gut wie immer mit einer Feile zu erledigen.

Werfen wir nochmal einen Blick auf die wesentlichen Teile des AG42B Ljungmann. Im Vergleich zum Schwedenmauser hat dieser eine relativ komplizierte Geometrie der Systemhülse und besitzt auch keinen Prallschild, in den die Rückstoßkräfte des Schusses eingeleitet werden können. Dafür ist das Ende der Systemhülse sehr massiv ausgeführt und für mich lag nahe, sämtliche Rückstoßkräfte nun über diese Fläche in den Schaft einzuleiten. Die Kunst lag nun darin, die Systemhülse sehr genau zu vermessen, um Abmessung und Toleranz für die Bettung im neuen Alugehäuse festzulegen. Rechts von der Systemhülse kann man auf dem nachfolgenden Bild ein kleines Metallplättchen erkennen, dass ich bei der Montage zusätzlich verwendet habe, um minimalstes Spiel aus dem Zusammenbau zwischen Systemhülse und Aluschaft herauszunehmen: Es handelt sich dabei um Metallfolie von 0,05mm Dicke, auf die sogar die stirnseitig vorhandene Kronenstempelung der Systemhülse aufgeprägt wurde, sobald alle drei Schaftschrauben angezogen waren. Ein Anzeichen dafür, dass das erste Teilziel erreicht wurde.

Systemhülse mit Verschluss und rückwärtiger Sicherung/Verriegelung, sowie Abzugsgruppe mit zwischenliegender Abstandshülse sind noch original. Das erwähnte Metallplättchen, sowie die drei Schaftschrauben (M6x0,75) sind angepasst. Die äußerst rechte Schraube wird zudem durch die Griffaufnahme und eine weitere Abstandshülse, sowie die Abzugsgruppe geführt, bis sie letztendlich mit der Systemhülse verschraubt wird.

Die nächsten Bilder zeigen Details des Schafts:

Da sich der Hinterschaft vom Projekt Schwedenmauser bisher bestens bewährt hat, ist er komplett übernommen worden. Die Schaftbacke stammt noch vom Prototyp des Anschlagschafts für meine 1911er. Sie musste nur um drei weitere Bohrungen ergänzt werden, die später aufgrund von aufgeklebtem Moosgummi nicht mehr sichtbar sind.

Noch ein Blick auf die Unterseite des Schafts. Hier ist die Griffaufnahme bereits durch die letzte Schaftschraube nahe des Abzugszüngels montiert. Rechts davon befindet sich eine Gewindebohrung zur Befestigung des Hogue-Griffes und wiederum rechts daneben eine zweite Schraube, die die Griffaufnahme mit dem Schaft verbindet.

Die Befestigung des Vorderschafts am Basisschaft ist asymmetrisch ausgeführt: Auf der rechten Seite wurde ein speziell gewinkeltes Verbindungsteil angebracht, um dort wiederum den Hülsenfangsack montieren zu können.

Einschränkungen

Wie im zweiten Teil zum Projekt beschrieben, habe ich mir einen zweiten Verschlussdeckel zugelegt, der nachgearbeitet wurde. Die beidseitigen Höcker wurden demontiert und ein kleines Stück Stahl wurde angeschweißt, um den Verschluss noch spannen und das gesamte Konstrukt in seinen Führungen auch noch bewegen zu können. Leider ist der angeschweißte Stab ohne allzu große Krafteinwirkung abgeplatzt und ich habe darauf verzichtet, weitere Schweißversuche zu unternehmen – Umdenken war also angesagt! Ich habe daraufhin den Entschluss gefasst, den originalen Verschlussdeckel des Gewehrs ebenfalls umzuarbeiten, diesmal jedoch nur den linken Höcker zu entfernen. Der rechte noch verbliebene Höcker erfüllt jetzt den gleichen Zweck, den der angeschweißte Stab erfüllen sollte, mit dem Unterschied, dass man den Verschlussdeckel zum Putzen des Gewehrs nun leider nicht mehr nach hinten entnehmen kann. Der Lauf muss fortan also bei gespanntem und nach hinten geschobenem Verschluss von vorne geputzt werden.

Ohne die Möglichkeit zur Entnahme des Sicherungsblocks wäre mir das zu heikel gewesen, denn allzu leicht löst sich der gespannte Verschluss und eine ernsthafte Verletzung wäre nur eine Frage der Zeit. Durch den am Sicherungsblock vorhandenen Pin war es notwendig, die Halterung der Picatinny-Schiene auszusparen. Der Sicherungsblock kann nun angehoben und schräg unterhalb der Picatinny-Schiene entnommen werden (selbige hat auf dem Bild noch nicht die endgültige Länge, es wurde kurzerhand mit einer kürzeren Schiene vom Projekt Schwedenmauser improvisiert).

Alternativ hätte ich auch die rechte hintere Stütze der Picatinny-Schiene entfernen können, um den Lauf wie ursprünglich geplant wieder von hinten putzen zu können. Allerdings erschien mir die Lagerung des Zielfernrohrs – dann allein durch die beiden linken Halterungen gestützt, dafür als nicht stabil genug.

Hier nun das Resultat des Umbaus, bevor es bei nächster Gelegenheit auf die Schießbahn geht. Selbstverständlich folgt noch ein Bericht zum Schussbild mit entsprechend gewählter Laborierung. Eloxiert wird erst ganz zum Schluss…

Gasdruck beim Wiederladen

Nach den Kommentaren eines aufmerksamen Lesers aus Teil 3 zu den Ladedaten für Schwedenmauser, möchte ich in diesem Beitrag anhand meiner bevorzugten Laborierung für den Schweden nochmal näher auf das Thema des zulässigen Gasdrucks beim Wiederladen eingehen. Diese Thematik betrifft eigentlich jede Patrone, die wiedergeladen wird. Ich bin vor einiger Zeit zu Recht darauf hingewiesen worden, dass meine bevorzugte Laborierung die maximale Ladeempfehlung von Vihtavuori bereits überschreitet. Mithilfe von Marvin und der Software „Quickload“ möchte ich also in diesem Beitrag einige Ergebnisse präsentieren und erläutern. Da ich nicht weiß, ob es lizenzrechtlich gestattet ist, Screenshots der Software von den kompletten Berechnungen zu veröffentlichen, beschränke ich mich hier auf die Beschreibung der Ergebnisse und ein kleines Diagramm. Der Schwerpunkt liegt mit diesem Beitrag auf den berechneten Gasdrücken und nicht mehr auf der Präzision oder der Mündungsgeschwindigkeit wie in den vergangenen Beiträgen.

Der Vorsicht halber möchte ich auch nochmals darauf hinweisen, dass es sich nachfolgend um theoretisch berechnete Werte durch eine Software handelt. Einen besseren Aufschluss über die im System herrschenden Gasdrücke ergibt wohl erst eine Messreihe aus Patronen, die man zur Ermittlung des Gasdrucks an ein Beschussamt einsendet. Ich möchte das mit meiner bevorzugten Laborierung auch noch tun und werde das Ergebnis veröffentlichen, sobald es vorliegt.

Ungeachtet des Ergebnisses gilt für alle nachfolgenden Ladedaten weiterhin folgender Warnhinweis:

Für die Richtigkeit der Ladedaten wird keine Garantie übernommen! Wiederlader handeln auf eigenes Risiko!

 

Ausgangssituation

So, warum mache ich so´n Quatsch eigentlich, dass ich Patronen mit höherem Gasdruck herstelle? Das Gewehr hat ja bereits mit anderen (weicheren) Laborierungen sehr gut geschossen. Ganz einfach: Ich wollte für das Long-Range-Schiessen eine Patrone mit höherer V0 haben, aus diesem Grund habe ich die Ladeempfehlung verlassen. Den maximal zulässigen Ladedruck eines Schwedenmausers habe ich mit 3800 bar recherchiert. Man muss sich nicht viel Mühe geben, Wikipedia kann da z.B. schnell Auskunft geben, ist aber sicherlich nur eine Quelle von vielen. Auch Quickload hat übrigens den Grenzwert von 3800 bar für diese Patrone. Als Maschinebau-Ingenieur ist mir bewusst, dass die Vorhersage eines Bauteilversagens nicht nur in Bezug auf die Höhe der eingeleiteten Kraft (i.V.m. Querschnittsprofil und Werkstoff), sondern auch in Bezug der Anzahl der Lastwechsel zu beurteilen ist (Stichwort Materialermüdung). Auch andere Faktoren spielen eine Rolle, aber das sind Details, die hier den Rahmen sprengen würden. Da ich noch nicht davon gehört habe, dass man aus Gewehren nur eine bestimmte Anzahl von Schüssen abgeben darf, gehe ich also erstmal davon aus, dass der Literaturwert von 3800 bar jener Maximaldruck ist, bei dem die Dauerfestigkeit des Werkstoffes noch gewährleistet ist.

Zur Erinnerung, dies sind meine bevorzugten Ladedaten:

  • Hülse: Lapua Match, Kailber 6,5×55 Swedish Mauser
  • Zündhütchen: Federal Ammunition FA 210
  • Pulver: Vihtavuori N150
  • Menge: 38,0 gr.
  • Geschoss: Lapua Scenar HPBT, 139gr. (GB458)
  • OAL: 76,5mm
  • Crimp: keiner
  • V0 (nach Quickload): 783 m/s
  • V0 (gemessen): 803 m/s
  • Max. Gasdruck (nach Quickload): 3069 bar
  • Max. zulässiger Gasdruck: 3800 bar

Damit bin ich noch etwas mehr als 700 bar vom maximal zulässigen Gasdruck entfernt. Klingt erstmal ausreichend, Schwankungen in der Produktion des NC-Pulvers oder in der Herstellung der Patrone können aber gefährlich werden, das sollte man einfach wissen.

 

Das sagt Vihtavuori

Ich verlinke hier mal die Ladeempfehlungen des Pulverherstellers. Beachtet bitte, dass es auch modernere Gewehre im klassischen „Schwedenkaliber“ gibt, die einen höheren zulässigen Gasdruck haben und meist unter 6,5×55 SE oder 6,5×55 SKAN geführt werden. Mein Gewehr besitzt zwar einen modernen Lauf von Schulz und Larsen aus dem Jahre 2010, allerdings ist meine Systemhülse noch die des klassischen Schwedenmauses mit einer Prägung der Fabrik „Carl Gustavs“. Da die Systemhülse letztendlich über den Verschluss sämtliche Kräfte aufnimmt, bleibe ich mal bescheiden und lege weiterhin einen zulässigen Maximaldruck von 3800 bar zugrunde.

Vihtavuori: 6,5×55 Swedish Mauser

Vihtavuori: 6,5×55 SE / 6,5×55 SKAN

Die Ladedaten 6,5×55 SE oder 6,5×55 SKAN sind hier nur der Vollständigkeit halber verlinkt und spielen bei der weiteren Betrachtung keine Rolle!

Bezogen auf das Geschoss Lapua Scenar GB458, ist die Maximalempfehlung von Vihtavuori folgende (von den fettgedruckten Werte weiche ich ab, s.o.):

  • Hülse: 6,5×55, Hersteller unbekannt
  • Zündhütchen: Hersteller unbekannt
  • Pulver: Vihtavuori N150
  • Menge: 35,2 gr.
  • Geschoss: Lapua Scenar HPBT, 139gr.
  • OAL: 78,0mm
  • Crimp: unbekannt
  • V0 (nach Vihtavuori): 761 m/s
  • V0 (nach Quickload): 742 m/s
  • Max. Gasdruck (nach Quickload): 2456 bar
  • Max. zulässiger Gasdruck: 3800 bar

Vihtavuori ist damit 1350 bar vom Maximaldruck entfernt. Ein theoretisch recht komfortabler Abstand. Ich gehe mal davon aus, dass keine Ladeempfehlungen veröffentlicht werden, die irgendwelche Klagen gegen den Pulverhersteller nach sich ziehen könnten.

 

Das sagt Vihtavuori aber auch

Schaut man sich die Ladeempfehlungen aus dem ersten Link etwas genauer an, so fällt eine auf, bei der beim 139gr.-Norma-Geschoss ganze 39,4 gr. N150 (maximal) erlaubt sind. OK, kann ja sein, dass sich Geschosse in Ihrer Geometrie äußerlich unterscheiden und gewisse Parameter der Patrone angepasst werden müssen. Aber entscheidend für ein gesundes Weiterschießen sollte ja immer noch der Gasdruck sein. Schauen wir uns die Daten mal mit Quickload an:

  • Hülse: 6,5×55, Hersteller unbekannt
  • Zündhütchen: Hersteller unbekannt
  • Pulver: Vihtavuori N150
  • Menge: 39,4 gr.
  • Geschoss: Norma HP, 139gr., (Mit Artikel 66517 aus der Datenbank von Quickload bezeichnet)
  • OAL: 78,0mm
  • Crimp: unbekannt
  • V0 (nach Vihtavuori): 779 m/s
  • V0 (nach Quickload): 807 m/s
  • Max. Gasdruck (nach Quickload): 3214 bar
  • Max. zulässiger Gasdruck: 3800 bar

Jetzt sind es sogar nur noch knapp 600 bar zum Maximaldruck.

Sind die Parameter für die Berechnungen mit Quickload alle richtig gewählt, so ist doch schon auffällig, dass es solche Unterschiede in den maximalen Ladeempfehlungen gibt. Für jemanden, der kein Quickload besitzt, erschließen sich diese Unterschiede im Gasdruck überhaupt nicht! Ist das jetzt ein Indiz dafür, dass man Gasdrücke  nahe 3800 bar nicht fürchten muss? Die Antwort folgt weiter unten…

 

Aussichten

Spielen wir mal ein wenig mit den Parametern der Software. Behalten wir dabei immer im Hinterkopf, dass den Ergebnissen nur Rechenalgorithmen zugrunde liegen und die Wirklichkeit anders aussehen kann.

  • „Meine Laborierung“, jedoch nur 37,0 gr. N150 (statt 38,0 gr.):

–> V0 sinkt auf 783m/s, Pmax sinkt von 3069 bar auf 2861 bar.

  • „Meine Laborierung“, jedoch OAL von 78,0mm (statt 76,5mm):

–>V0 sinkt auf 772m/s, Pmax sinkt von 3069 bar auf 2986 bar.

Möchte man den Gasdruck senken, hat es also den größeren Effekt, die Pulvermenge zu reduzieren, statt die Patronenlänge zu erhöhen. Nicht wirklich verwunderlich… Der umgekehrte Effekt tritt erst wieder ein, wenn man das Geschoss bis an die Züge setzt.

Irgendwann will man natürlich zu dem Punkt kommen, an dem man tatsächlich beurteilen kann, ob man sich mit einer Laborierung sicher fühlen kann, oder nicht. Nehmen wir dabei Quickload zu Hilfe und seine Grenzwertbereiche für Gasdrücke, die je nach Gefahrenpotenzial farblich hinterlegt sind (hier bezogen auf den Schweden mit 3800 bar Maximaldruck).

 

Diagramm
Exemplarisches Diagramm

 

  • Ohne Markierung/Weiss: bis 2800 bar

–> Warnmeldung: keine

  • Gelb markierter Bereich: 2800 bar – 3200 bar

–> Warnmeldung: keine

  • Lila markierter Bereich: 3200 bar – 3800 bar

–> Warnmeldung: „WARNUNG: Nahe am höchstzulässigen Gasdruck. Toleranzen können gefährliche Drücke verursachen!“

  • Rot markierter Bereich: >3800 bar

–> Warnmeldung: Hierzu liegt mir keine Info vor, soweit habe ich es nicht kommen lassen.

 

Beschussamt Mellrichstadt

Ich habe kurzerhand mal beim Beschussamt Mellrichstadt angerufen und das Glück gehabt, einen freundlichen Mitarbeiter zu sprechen, der sich für mich Zeit genommen hat. Meine wichtigste Frage wurde mir wie folgt beantwortet: Der Gasdruck nach CIP kann als dauerfest angesehen werden. Allerdings wurde mir auch empfohlen, einen Abstand von ca. 10 Prozent zum maximalen Gasdruck zu wahren, denn eine Materialermüdung kann immer im Bereich des Möglichen sein.

 

Mein Fazit

Ich habe mich im Rahmen dieses Beitrags nochmal eingehender mit den Ladedaten befasst, werde aber an meiner Laborierung für den Schweden aus folgenden Gründen festhalten:

  • Alle bisher ca. 600 abgeschossenen Patronenhülsen ließen sich problemlos herausrepetieren.
  • Kein einziges Zündhütchen war derart platt, dass der abgesetzte Ring an der Zündglocke bereits verdeckt war.
  • Vollkalibrieren von abgeschossenen Hülsen bedurfte nie eines erhöhten Kraftaufwands. Die Schleifspuren des Vollkalibrierens waren im Bereich des Hülsenbodens stets minimal, im Bereich des Hülsenhalses naturgemäß deutlich.
  • Alleiniges Halskalibrieren bereits abgeschossener Hülsen mit Anfertigung von Patronendummies ergab keine Probleme beim Laden/Repetieren des Verschlusses – somit keine Hinweise auf „Ausbauchen“ der Hülsen aufgrund erhöhten Gasdrucks.
  • Maximal zulässiger Gasdruck wird um 700 bar (entspricht 18% Differenz zum Maximalwert) unterschritten.
  • Keine Warnhinweise durch Software Quickload.

 

Das war nun ein recht trockener Beitrag zum Thema Wiederladen. Ich halte nicht aus Trotz an meiner Laborierung fest, sondern tue das nach sorgfältiger Auswertung aller Informationen, die ich bekommen konnte. Ich will mit diesem Beitrag auch niemanden dazu animieren, die Ladeempfehlungen der Hersteller generell zu überschreiten, für die meisten Sportschützen ist das auf den disziplinenkonformen Distanzen auch gar nicht notwendig. Sollte ich jemandem mit Long-Range-Ambitionen nützliche Anregungen geliefert haben, so freut mich das. Die letzte beobachtete Reichweite meines Schwedenmausers mit meinen o.g. Ladedaten beträgt übrigens 1350m. Weitere Kommentare oder Anregungen zu diesem Beitrag sind herzlich willkommen!